Palindromic Length and Reduction of Powers

03/26/2021
by   Josef Rukavicka, et al.
0

Given a nonempty finite word v, let PL(v) be the palindromic length of v; it means the minimal number of palindromes whose concatenation is equal to v. Let v^R denote the reversal of v. Given a finite or infinite word y, let Fac(y) denote the set of all finite factors of y and let maxPL(y)=max{PL(t)| t∈ Fac(y)}. Let x be an infinite non-ultimately periodic word with maxPL(x)=k<∞ and let u∈ Fac(x) be a primitive nonempty factor such that u^5 is recurrent in x. Let Ψ(x,u)={t∈ Fac(x)| u,u^R∉Fac(t)} We construct an infinite non-ultimately periodic word x such that u^5, (u^R)^5∉Fac(x), Ψ(x,u)⊆ Fac(x), and maxPL(x)≤ 3k^3. Less formally said, we show how to reduce the powers of u and u^R in x in such a way that the palindromic length remains bounded.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro