Parallel and Distributed Algorithms for the housing allocation Problem

05/08/2019
by   Xiong Zheng, et al.
0

We give parallel and distributed algorithms for the housing allocation problem. In this problem, there is a set of agents and a set of houses. Each agent has a strict preference list for a subset of houses. We need to find a matching such that some criterion is optimized. One such criterion is Pareto Optimality. A matching is Pareto optimal if no coalition of agents can be strictly better off by exchanging houses among themselves. We also study the housing market problem, a variant of the housing allocation problem, where each agent initially owns a house. In addition to Pareto optimality, we are also interested in finding the core of a housing market. A matching is in the core if there is no coalition of agents that can be better off by breaking away from other agents and switching houses only among themselves. In the first part of this work, we show that computing a Pareto optimal matching of a house allocation is in CC and computing the core of a housing market is CC-hard. Given a matching, we also show that verifying whether it is in the core can be done in NC. We then give an algorithm to show that computing a maximum Pareto optimal matching for the housing allocation problem is in RNC^2 and quasi- NC^2. In the second part of this work, we present a distributed version of the top trading cycle algorithm for finding the core of a housing market. To that end, we first present two algorithms for finding all the disjoint cycles in a functional graph: a Las Vegas algorithm which terminates in O( l) rounds with high probability, where l is the length of the longest cycle, and a deterministic algorithm which terminates in O(^* n l) rounds, where n is the number of nodes in the graph. Both algorithms work in the synchronous distributed model and use messages of size O( n).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset