Parallel Global Edge Switching for the Uniform Sampling of Simple Graphs with Prescribed Degrees

11/04/2021
by   Daniel Allendorf, et al.
0

The uniform sampling of simple graphs matching a prescribed degree sequence is an important tool in network science, e.g., to construct graph generators or null-models. Here, the Edge Switching Markov Chain (ES-MC) is a common choice. Given an arbitrary simple graph with the required degree sequence, ES-MC carries out a large number of small changes involving at most four edges to eventually obtain a uniform sample. In practice, reasonably short runs efficiently yield approximate uniform samples. We first engineer a simple sequential ES-MC implementation representing the graph in a hash-set. Despite its simplicity and to the best of our knowledge, our implementation significantly outperforms all openly available solutions. Secondly, we propose the Global Edge Switching Markov Chain (G-ES-MC) and show that it, too, converges to a uniform distribution. We provide empirical evidence that G-ES-MC requires not more switches than ES-MC (and often fewer). Thirdly, we engineer shared-memory parallel algorithms for ES-MC and G-ES-MC; we find that they benefit from the easier dependency structure of the G-ES-MC. In an empirical evaluation, we demonstrate the scalability of our implementations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset