Parallel Stochastic Gradient Descent with Sound Combiners

05/22/2017
by   Saeed Maleki, et al.
0

Stochastic gradient descent (SGD) is a well known method for regression and classification tasks. However, it is an inherently sequential algorithm at each step, the processing of the current example depends on the parameters learned from the previous examples. Prior approaches to parallelizing linear learners using SGD, such as HOGWILD! and ALLREDUCE, do not honor these dependencies across threads and thus can potentially suffer poor convergence rates and/or poor scalability. This paper proposes SYMSGD, a parallel SGD algorithm that, to a first-order approximation, retains the sequential semantics of SGD. Each thread learns a local model in addition to a model combiner, which allows local models to be combined to produce the same result as what a sequential SGD would have produced. This paper evaluates SYMSGD's accuracy and performance on 6 datasets on a shared-memory machine shows upto 11x speedup over our heavily optimized sequential baseline on 16 cores and 2.2x, on average, faster than HOGWILD!.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset