Parallelization of Machine Learning Algorithms Respectively on Single Machine and Spark
With the rapid development of big data technologies, how to dig out useful information from massive data becomes an essential problem. However, using machine learning algorithms to analyze large data may be time-consuming and inefficient on the traditional single machine. To solve these problems, this paper has made some research on the parallelization of several classic machine learning algorithms respectively on the single machine and the big data platform Spark. We compare the runtime and efficiency of traditional machine learning algorithms with parallelized machine learning algorithms respectively on the single machine and Spark platform. The research results have shown significant improvement in runtime and efficiency of parallelized machine learning algorithms.
READ FULL TEXT