Parameter-Free Deterministic Reduction of the Estimation Bias in Continuous Control

09/24/2021
by   Baturay Saglam, et al.
0

Approximation of the value functions in value-based deep reinforcement learning systems induces overestimation bias, resulting in suboptimal policies. We show that when the reinforcement signals received by the agents have a high variance, deep actor-critic approaches that overcome the overestimation bias lead to a substantial underestimation bias. We introduce a parameter-free, novel deep Q-learning variant to reduce this underestimation bias for continuous control. By obtaining fixed weights in computing the critic objective as a linear combination of the approximate critic functions, our Q-value update rule integrates the concepts of Clipped Double Q-learning and Maxmin Q-learning. We test the performance of our improvement on a set of MuJoCo and Box2D continuous control tasks and find that it improves the state-of-the-art and outperforms the baseline algorithms in the majority of the environments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro