Pareto optimal and popular house allocation with lower and upper quotas
In the house allocation problem with lower and upper quotas, we are given a set of applicants and a set of projects. Each applicant has a strictly ordered preference list over the projects, while the projects are equipped with a lower and an upper quota. A feasible matching assigns the applicants to the projects in such a way that a project is either matched to no applicant or to a number of applicants between its lower and upper quota. In this model we study two classic optimality concepts: Pareto optimality and popularity. We show that finding a popular matching is hard even if the maximum lower quota is 2 and that finding a perfect Pareto optimal matching, verifying Pareto optimality, and verifying popularity are all NP-complete even if the maximum lower quota is 3. We complement the last three negative results by showing that the problems become polynomial-time solvable when the maximum lower quota is 2, thereby answering two open questions of Cechlárová and Fleiner. Finally, we also study the parameterized complexity of all four mentioned problems.
READ FULL TEXT