PENet: A Joint Panoptic Edge Detection Network

03/15/2023
by   Yang Zhou, et al.
0

In recent years, compact and efficient scene understanding representations have gained popularity in increasing situational awareness and autonomy of robotic systems. In this work, we illustrate the concept of a panoptic edge segmentation and propose PENet, a novel detection network called that combines semantic edge detection and instance-level perception into a compact panoptic edge representation. This is obtained through a joint network by multi-task learning that concurrently predicts semantic edges, instance centers and offset flow map without bounding box predictions exploiting the cross-task correlations among the tasks. The proposed approach allows extending semantic edge detection to panoptic edge detection which encapsulates both category-aware and instance-aware segmentation. We validate the proposed panoptic edge segmentation method and demonstrate its effectiveness on the real-world Cityscapes dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset