Per-RMAP: Feasibility-Seeking and Superiorization Methods for Floorplanning with I/O Assignment

04/05/2023
by   Shan Yu, et al.
0

The feasibility-seeking approach provides a systematic scheme to manage and solve complex constraints for continuous problems, and we explore it for the floorplanning problems with increasingly heterogeneous constraints. The classic legality constraints can be formulated as the union of convex sets. However, the convergence of conventional projection-based algorithms is not guaranteed as the constrain sets are non-convex. In this work, we propose a resetting strategy to greatly eliminate the the divergence issue of the projection-based algorithm for the feasibility-seeking formulation. Furthermore, the superiorization methodology (SM), which lies between feasibility-seeking and constrained optimization, is firstly applied to floorplanning. The SM uses perturbations to steer the feasibility-seeking algorithm to a feasible solution with shorter total wirelength. The proposed flow is extendable to tackle various constraints and variants of floorplanning problems, e.g., floorplanning with I/O assignment problems. We have evaluated the proposed algorithm on the MCNC benchmarks. We can obtain legal floorplans only two times slower than the branch-and-bound method in its current prototype using MATLAB, with only 3 wirelength inferior to the optimal results. We evaluate the effectiveness of the flow by considering the constraints of I/O assignment, and our algorithm achieve 8

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset