Petrophysical property estimation from seismic data using recurrent neural networks
Reservoir characterization involves the estimation petrophysical properties from well-log data and seismic data. Estimating such properties is a challenging task due to the non-linearity and heterogeneity of the subsurface. Various attempts have been made to estimate petrophysical properties using machine learning techniques such as feed-forward neural networks and support vector regression (SVR). Recent advances in machine learning have shown promising results for recurrent neural networks (RNN) in modeling complex sequential data such as videos and speech signals. In this work, we propose an algorithm for property estimation from seismic data using recurrent neural networks. An applications of the proposed workflow to estimate density and p-wave impedance using seismic data shows promising results compared to feed-forward neural networks.
READ FULL TEXT