PGTRNet: Two-phase Weakly Supervised Object Detection with Pseudo Ground Truth Refining
Weakly Supervised Object Detection (WSOD), aiming to train detectors with only image-level annotations, has arisen increasing attention. Current state-of-the-art approaches mainly follow a two-stage training strategy whichintegrates a fully supervised detector (FSD) with a pure WSOD model. There are two main problems hindering the performance of the two-phase WSOD approaches, i.e., insufficient learning problem and strict reliance between the FSD and the pseudo ground truth (PGT) generated by theWSOD model. This paper proposes pseudo ground truth refinement network (PGTRNet), a simple yet effective method without introducing any extra learnable parameters, to cope with these problems. PGTRNet utilizes multiple bounding boxes to establish the PGT, mitigating the insufficient learning problem. Besides, we propose a novel online PGT refinement approach to steadily improve the quality of PGTby fully taking advantage of the power of FSD during the second-phase training, decoupling the first and second-phase models. Elaborate experiments are conducted on the PASCAL VOC 2007 benchmark to verify the effectiveness of our methods. Experimental results demonstrate that PGTRNet boosts the backbone model by 2.074 significant potentials of the second-phase training.
READ FULL TEXT