Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems

02/22/2019
by   Meysam Sadeghi, et al.
0

We show that end-to-end learning of communication systems through deep neural network (DNN) autoencoders can be extremely vulnerable to physical adversarial attacks. Specifically, we elaborate how an attacker can craft effective physical black-box adversarial attacks. Due to the openness (broadcast nature) of the wireless channel, an adversary transmitter can increase the block-error-rate of a communication system by orders of magnitude by transmitting a well-designed perturbation signal over the channel. We reveal that the adversarial attacks are more destructive than jamming attacks. We also show that classical coding schemes are more robust than autoencoders against both adversarial and jamming attacks. The codes are available at [1].

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset