Play the Shannon Game With Language Models: A Human-Free Approach to Summary Evaluation

03/19/2021
by   Nicholas Egan, et al.
0

The goal of a summary is to concisely state the most important information in a document. With this principle in mind, we introduce new reference-free summary evaluation metrics that use a pretrained language model to estimate the information shared between a document and its summary. These metrics are a modern take on the Shannon Game, a method for summary quality scoring proposed decades ago, where we replace human annotators with language models. We also view these metrics as an extension of BLANC, a recently proposed approach to summary quality measurement based on the performance of a language model with and without the help of a summary. Using GPT-2, we empirically verify that the introduced metrics correlate with human judgement based on coverage, overall quality, and five summary dimensions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset