PoF: Proof-of-Following for Vehicle Platoons
Cooperative vehicle platooning significantly improves highway safety and fuel efficiency. In this model, a set of vehicles move in line formation and coordinate functions such as acceleration, braking, and steering using a combination of physical sensing and vehicle-to-vehicle (V2V) messaging. The authenticity and integrity of the V2V messages are paramount to highway safety. For this reason, recent V2V and V2X standards support the integration of a PKI. However, a PKI cannot bind a vehicle's digital identity to the vehicle's physical state (location, heading, velocity, etc.). As a result, a vehicle with valid cryptographic credentials can impact the platoon by creating "ghost" vehicles and injecting false state information. In this paper, we seek to provide the missing link between the physical and the digital world in the context of verifying a vehicle's platoon membership. We focus on the property of following, where vehicles follow each other in a close and coordinated manner. We aim at developing a Proof-of-Following (PoF) protocol that enables a candidate vehicle to prove that it follows a verifier within the typical platooning distance. The main idea of the proposed PoF protocol is to draw security from the common, but constantly changing environment experienced by the closely traveling vehicles. We use the large-scale fading effect of ambient RF signals as a common source of randomness to construct a PoF primitive. The correlation of large-scale fading is an ideal candidate for the mobile outdoor environment because it exponentially decays with distance and time. We evaluate our PoF protocol on an experimental platoon of two vehicles in freeway, highway, and urban driving conditions. In such realistic conditions, we demonstrate that the PoF withstands both the pre-recording and following attacks with overwhelming probability.
READ FULL TEXT