Polynomial-Time Approximation of Zero-Free Partition Functions

01/30/2022
by   Penghui Yao, et al.
0

Zero-free based algorithm is a major technique for deterministic approximate counting. In Barvinok's original framework[Bar17], by calculating truncated Taylor expansions, a quasi-polynomial time algorithm was given for estimating zero-free partition functions. Patel and Regts[PR17] later gave a refinement of Barvinok's framework, which gave a polynomial-time algorithm for a class of zero-free graph polynomials that can be expressed as counting induced subgraphs in bounded-degree graphs. In this paper, we give a polynomial-time algorithm for estimating classical and quantum partition functions specified by local Hamiltonians with bounded maximum degree, assuming a zero-free property for the temperature. Consequently, when the inverse temperature is close enough to zero by a constant gap, we have polynomial-time approximation algorithm for all such partition functions. Our result is based on a new abstract framework that extends and generalizes the approach of Patel and Regts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset