Pool-based sequential active learning with multi kernels

10/22/2020
by   Jeongmin Chae, et al.
0

We study a pool-based sequential active learning (AL), in which one sample is queried at each time from a large pool of unlabeled data according to a selection criterion. For this framework, we propose two selection criteria, named expected-kernel-discrepancy (EKD) and expected-kernel-loss (EKL), by leveraging the particular structure of multiple kernel learning (MKL). Also, it is identified that the proposed EKD and EKL successfully generalize the concepts of popular query-by-committee (QBC) and expected-model-change (EMC), respectively. Via experimental results with real-data sets, we verify the effectiveness of the proposed criteria compared with the existing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset