Population-based metaheuristics for Association Rule Text Mining
Nowadays, the majority of data on the Internet is held in an unstructured format, like websites and e-mails. The importance of analyzing these data has been growing day by day. Similar to data mining on structured data, text mining methods for handling unstructured data have also received increasing attention from the research community. The paper deals with the problem of Association Rule Text Mining. To solve the problem, the PSO-ARTM method was proposed, that consists of three steps: Text preprocessing, Association Rule Text Mining using population-based metaheuristics, and text postprocessing. The method was applied to a transaction database obtained from professional triathlon athletes' blogs and news posted on their websites. The obtained results reveal that the proposed method is suitable for Association Rule Text Mining and, therefore, offers a promising way for further development.
READ FULL TEXT