Predicting Academic Performance for College Students: A Campus Behavior Perspective

03/15/2019
by   Huaxiu Yao, et al.
0

Detecting abnormal behaviors of students in time and providing personalized intervention and guidance at the early stage is important in educational management. Academic performance prediction is an important building block to enabling this pre-intervention and guidance. Most of the previous studies are based on questionnaire surveys and self-reports, which suffer from small sample size and social desirability bias. In this paper, we collect longitudinal behavioral data from 6,597 students' smart cards and propose three major types of discriminative behavioral factors, diligence, orderliness, and sleep patterns. Empirical analysis demonstrates these behavioral factors are strongly correlated with academic performance. Furthermore, motivated by social influence theory, we analyze the correlation between each student's academic performance with his/her behaviorally similar students'. Statistical tests indicate this correlation is significant. Based on these factors, we further build a multi-task predictive framework based on a learning-to-rank algorithm for academic performance prediction. This framework captures inter-semester correlation, inter-major correlation and integrates student similarity to predict students' academic performance. The experiments on a large-scale real-world dataset show the effectiveness of our methods for predicting academic performance and the effectiveness of proposed behavioral factors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset