Predicting Adolescent Suicide Attempts with Neural Networks

11/28/2017
by   Harish S. Bhat, et al.
0

Though suicide is a major public health problem in the US, machine learning methods are not commonly used to predict an individual's risk of attempting/committing suicide. In the present work, starting with an anonymized collection of electronic health records for 522,056 unique, California-resident adolescents, we develop neural network models to predict suicide attempts. We frame the problem as a binary classification problem in which we use a patient's data from 2006-2009 to predict either the presence (1) or absence (0) of a suicide attempt in 2010. After addressing issues such as severely imbalanced classes and the variable length of a patient's history, we build neural networks with depths varying from two to eight hidden layers. For test set observations where we have at least five ED/hospital visits' worth of data on a patient, our depth-4 model achieves a sensitivity of 0.703, specificity of 0.980, and AUC of 0.958.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset