Predicting the Gender of Indonesian Names

07/22/2017
by   Ali Akbar Septiandri, et al.
0

We investigated a way to predict the gender of a name using character-level Long-Short Term Memory (char-LSTM). We compared our method with some conventional machine learning methods, namely Naive Bayes, logistic regression, and XGBoost with n-grams as the features. We evaluated the models on a dataset consisting of the names of Indonesian people. It is not common to use a family name as the surname in Indonesian culture, except in some ethnicities. Therefore, we inferred the gender from both full names and first names. The results show that we can achieve 92.25 first names only yields 90.65 from applying the classical machine learning algorithms to n-grams.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset