Prescribed-Time Synchronization of Multiweighted and Directed Complex Networks
In this note, we study the prescribed-time (PT) synchronization of multiweighted and directed complex networks (MWDCNs) via pinning control. Unlike finite-time and fixed-time synchronization, the time for synchronization can be preset as needed, which is independent of initial values and parameters like coupling strength. First and foremost, we reveal the essence of PT stability by improper integral, L'Hospital rule and Taylor expansion theory. Many controllers established previously for PT stability can be included in our new model. Then, we apply this new result on MWDCNs as an application. The synchronization error at the prescribed time is discussed carefully, so, PT synchronization can be reached. The network topology can be directed and disconnected, which means that the outer coupling matrices (OCMs) can be asymmetric and not connected. The relationships between nodes are allowed to be cooperative or competitive, so elements in OCMs and inner coupling matrices (ICMs) can be positive or negative. We use the rearranging variables' order technique to combine ICMs and OCMs together to get the sum matrices, which can make a bridge between multiweighted and single-weighted networks. Finally, simulations are presented to illustrate the effectiveness of our theory.
READ FULL TEXT