Preservation of Equations by Monoidal Monads

01/17/2020
by   Louis Parlant, et al.
0

If a monad T is monoidal, then operations on a set X can be lifted canonically to operations on TX. In this paper we study structural properties under which T preserves equations between those operations. It has already been shown that any monoidal monad preserves linear equations; affine monads preserve drop equations (where some variable appears only on one side, such as x· y = y) and relevant monads preserve dup equations (where some variable is duplicated, such as x · x = x). We start the paper by showing a converse: if the monad at hand preserves a drop equation, then it must be affine. From this, we show that the problem whether a given (drop) equation is preserved is undecidable. A converse for relevance turns out to be more subtle: preservation of certain dup equations implies a weaker notion which we call n-relevance. Finally, we identify the subclass of equations such that their preservation is equivalent to relevance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro