PRIME: A Few Primitives Can Boost Robustness to Common Corruptions
Despite their impressive performance on image classification tasks, deep networks have a hard time generalizing to many common corruptions of their data. To fix this vulnerability, prior works have mostly focused on increasing the complexity of their training pipelines, combining multiple methods, in the name of diversity. However, in this work, we take a step back and follow a principled approach to achieve robustness to common corruptions. We propose PRIME, a general data augmentation scheme that consists of simple families of max-entropy image transformations. We show that PRIME outperforms the prior art for corruption robustness, while its simplicity and plug-and-play nature enables it to be combined with other methods to further boost their robustness. Furthermore, we analyze PRIME to shed light on the importance of the mixing strategy on synthesizing corrupted images, and to reveal the robustness-accuracy trade-offs arising in the context of common corruptions. Finally, we show that the computational efficiency of our method allows it to be easily used in both on-line and off-line data augmentation schemes.
READ FULL TEXT