Privacy-Preserving Phishing Email Detection Based on Federated Learning and LSTM
Phishing emails that appear legitimate lure people into clicking on the attached malicious links or documents. Increasingly more sophisticated phishing campaigns in recent years necessitate a more adaptive detection system other than traditional signature-based methods. In this regard, natural language processing (NLP) with deep neural networks (DNNs) is adopted for knowledge acquisition from a large number of emails. However, such sensitive daily communications containing personal information are difficult to collect on a server for centralized learning in real life due to escalating privacy concerns. To this end, we propose a decentralized phishing email detection method called the Federated Phish Bowl (FPB) leveraging federated learning and long short-term memory (LSTM). FPB allows common knowledge representation and sharing among different clients through the aggregation of trained models to safeguard the email security and privacy. A recent phishing email dataset was collected from an intergovernmental organization to train the model. Moreover, we evaluated the model performance based on various assumptions regarding the total client number and the level of data heterogeneity. The comprehensive experimental results suggest that FPB is robust to a continually increasing client number and various data heterogeneity levels, retaining a detection accuracy of 0.83 and protecting the privacy of sensitive email communications.
READ FULL TEXT