Probabilistic Circuits for Variational Inference in Discrete Graphical Models
Inference in discrete graphical models with variational methods is difficult because of the inability to re-parameterize gradients of the Evidence Lower Bound (ELBO). Many sampling-based methods have been proposed for estimating these gradients, but they suffer from high bias or variance. In this paper, we propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN), to compute ELBO gradients exactly (without sampling) for a certain class of densities. In particular, we show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is a polynomial the corresponding ELBO can be computed analytically. To scale to graphical models with thousands of variables, we develop an efficient and effective construction of selective-SPNs with size O(kn), where n is the number of variables and k is an adjustable hyperparameter. We demonstrate our approach on three types of graphical models – Ising models, Latent Dirichlet Allocation, and factor graphs from the UAI Inference Competition. Selective-SPNs give a better lower bound than mean-field and structured mean-field, and is competitive with approximations that do not provide a lower bound, such as Loopy Belief Propagation and Tree-Reweighted Belief Propagation. Our results show that probabilistic circuits are promising tools for variational inference in discrete graphical models as they combine tractability and expressivity.
READ FULL TEXT