Probabilistic Query Evaluation with Bag Semantics

01/27/2022
by   Martin Grohe, et al.
0

We initiate the study of probabilistic query evaluation under bag semantics where tuples are allowed to be present with duplicates. We focus on self-join free conjunctive queries, and probabilistic databases where occurrences of different facts are independent, which is the natural generalization of tuple-independent probabilistic databases to the bag semantics setting. For set semantics, the data complexity of this problem is well understood, even for the more general class of unions of conjunctive queries: it is either in polynomial time, or #P-hard, depending on the query (Dalvi Suciu, JACM 2012). Due to potentially unbounded multiplicities, the bag probabilistic databases we discuss are no longer finite objects, which requires a treatment of representation mechanisms. Moreover, the answer to a Boolean query is a probability distribution over non-negative integers, rather than a probability distribution over true, false. Therefore, we discuss two flavors of probabilistic query evaluation: computing expectations of answer tuple multiplicities, and computing the probability that a tuple is contained in the answer at most k times for some parameter k. Subject to mild technical assumptions on the representation systems, it turns out that expectations are easy to compute, even for unions of conjunctive queries. For query answer probabilities, we obtain a dichotomy between solvability in polynomial time and #P-hardness for self-join free conjunctive queries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset