Probing Task-Oriented Dialogue Representation from Language Models

10/26/2020
by   Chien-Sheng Wu, et al.
0

This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks. We approach the problem from two aspects: supervised classifier probe and unsupervised mutual information probe. We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way. Meanwhile, we propose an unsupervised mutual information probe to evaluate the mutual dependence between a real clustering and a representation clustering. The goals of this empirical paper are to 1) investigate probing techniques, especially from the unsupervised mutual information aspect, 2) provide guidelines of pre-trained language model selection for the dialogue research community, 3) find insights of pre-training factors for dialogue application that may be the key to success.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro