Project CGX: Scalable Deep Learning on Commodity GPUs

11/16/2021
by   Ilia Markov, et al.
0

The ability to scale out training workloads has been one of the key performance enablers of deep learning. The main scaling approach is data-parallel GPU-based training, which has been boosted by hardware and software support for highly efficient inter-GPU communication, in particular via bandwidth overprovisioning. This support comes at a price: there is an order of magnitude cost difference between "cloud-grade" servers with such support, relative to their "consumer-grade" counterparts, although server-grade and consumer-grade GPUs can have similar computational envelopes. In this paper, we investigate whether the expensive hardware overprovisioning approach can be supplanted via algorithmic and system design, and propose a framework called CGX, which provides efficient software support for communication compression. We show that this framework is able to remove communication bottlenecks from consumer-grade multi-GPU systems, in the absence of hardware support: when training modern models and tasks to full accuracy, our framework enables self-speedups of 2-3X on a commodity system using 8 consumer-grade NVIDIA RTX 3090 GPUs, and enables it to surpass the throughput of an NVIDIA DGX-1 server, which has similar peak FLOPS but benefits from bandwidth overprovisioning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro