ProSelfLC: Progressive Self Label Correction for Target Revising in Label Noise

05/07/2020
by   Xinshao Wang, et al.
2

In this work, we address robust deep learning under label noise (semi-supervised learning) from the perspective of target revising. We make three main contributions. First, we present a comprehensive mathematical study on existing target modification techniques, including Pseudo-Label [1], label smoothing [2], bootstrapping [3], knowledge distillation [4], confidence penalty [5], and joint optimisation [6]. Consequently, we reveal their relationships and drawbacks. Second, we propose ProSelfLC, a progressive and adaptive self label correction method, endorsed by learning time and predictive confidence. It addresses the disadvantages of existing algorithms and embraces many practical merits: (1) It is end-to-end trainable; (2) Given an example, ProSelfLC has the ability to revise an one-hot target by adding the information about its similarity structure, and correcting its semantic class; (3) No auxiliary annotations, or extra learners are required. Our proposal is designed according to the well-known expertise: deep neural networks learn simple meaningful patterns before fitting noisy patterns [7-9], and entropy regularisation principle [10, 11]. Third, label smoothing, confidence penalty and naive label correction perform on par with the state-of-the-art in our implementation. This probably indicates they were not benchmarked properly in prior work. Furthermore, our ProSelfLC outperforms them significantly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset