Prototypal Analysis and Prototypal Regression

01/31/2017
by   Chenyue Wu, et al.
0

Prototypal analysis is introduced to overcome two shortcomings of archetypal analysis: its sensitivity to outliers and its non-locality, which reduces its applicability as a learning tool. Same as archetypal analysis, prototypal analysis finds prototypes through convex combination of the data points and approximates the data through convex combination of the archetypes, but it adds a penalty for using prototypes distant from the data points for their reconstruction. Prototypal analysis can be extended---via kernel embedding---to probability distributions, since the convexity of the prototypes makes them interpretable as mixtures. Finally, prototypal regression is developed, a robust supervised procedure which allows the use of distributions as either features or labels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset