Prototypical Contrast and Reverse Prediction: Unsupervised Skeleton Based Action Recognition

11/14/2020
by   Shihao Xu, et al.
0

In this paper, we focus on unsupervised representation learning for skeleton-based action recognition. Existing approaches usually learn action representations by sequential prediction but they suffer from the inability to fully learn semantic information. To address this limitation, we propose a novel framework named Prototypical Contrast and Reverse Prediction (PCRP), which not only creates reverse sequential prediction to learn low-level information (e.g., body posture at every frame) and high-level pattern (e.g., motion order), but also devises action prototypes to implicitly encode semantic similarity shared among sequences. In general, we regard action prototypes as latent variables and formulate PCRP as an expectation-maximization task. Specifically, PCRP iteratively runs (1) E-step as determining the distribution of prototypes by clustering action encoding from the encoder, and (2) M-step as optimizing the encoder by minimizing the proposed ProtoMAE loss, which helps simultaneously pull the action encoding closer to its assigned prototype and perform reverse prediction task. Extensive experiments on N-UCLA, NTU 60, and NTU 120 dataset present that PCRP outperforms state-of-the-art unsupervised methods and even achieves superior performance over some of supervised methods. Codes are available at https://github.com/Mikexu007/PCRP.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset