Prototypical Contrastive Transfer Learning for Multimodal Language Understanding

07/12/2023
by   Seitaro Otsuki, et al.
0

Although domestic service robots are expected to assist individuals who require support, they cannot currently interact smoothly with people through natural language. For example, given the instruction "Bring me a bottle from the kitchen," it is difficult for such robots to specify the bottle in an indoor environment. Most conventional models have been trained on real-world datasets that are labor-intensive to collect, and they have not fully leveraged simulation data through a transfer learning framework. In this study, we propose a novel transfer learning approach for multimodal language understanding called Prototypical Contrastive Transfer Learning (PCTL), which uses a new contrastive loss called Dual ProtoNCE. We introduce PCTL to the task of identifying target objects in domestic environments according to free-form natural language instructions. To validate PCTL, we built new real-world and simulation datasets. Our experiment demonstrated that PCTL outperformed existing methods. Specifically, PCTL achieved an accuracy of 78.1 simple fine-tuning achieved an accuracy of 73.4

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset