Provable Benefits of Policy Learning from Human Preferences in Contextual Bandit Problems

07/24/2023
by   Xiang Ji, et al.
0

A crucial task in decision-making problems is reward engineering. It is common in practice that no obvious choice of reward function exists. Thus, a popular approach is to introduce human feedback during training and leverage such feedback to learn a reward function. Among all policy learning methods that use human feedback, preference-based methods have demonstrated substantial success in recent empirical applications such as InstructGPT. In this work, we develop a theory that provably shows the benefits of preference-based methods in offline contextual bandits. In particular, we improve the modeling and suboptimality analysis for running policy learning methods on human-scored samples directly. Then, we compare it with the suboptimality guarantees of preference-based methods and show that preference-based methods enjoy lower suboptimality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset