Provable Domain Generalization via Invariant-Feature Subspace Recovery

01/30/2022
by   Haoxiang Wang, et al.
0

Domain generalization asks for models trained on a set of training environments to perform well on unseen test environments. Recently, a series of algorithms such as Invariant Risk Minimization (IRM) has been proposed for domain generalization. However, Rosenfeld et al. (2021) shows that in a simple linear data model, even if non-convexity issues are ignored, IRM and its extensions cannot generalize to unseen environments with less than d_s+1 training environments, where d_s is the dimension of the spurious-feature subspace. In this paper, we propose to achieve domain generalization with Invariant-feature Subspace Recovery (ISR). Our first algorithm, ISR-Mean, can identify the subspace spanned by invariant features from the first-order moments of the class-conditional distributions, and achieve provable domain generalization with d_s+1 training environments under the data model of Rosenfeld et al. (2021). Our second algorithm, ISR-Cov, further reduces the required number of training environments to O(1) using the information of second-order moments. Notably, unlike IRM, our algorithms bypass non-convexity issues and enjoy global convergence guarantees. Empirically, our ISRs can obtain superior performance compared with IRM on synthetic benchmarks. In addition, on three real-world image and text datasets, we show that ISR-Mean can be used as a simple yet effective post-processing method to increase the worst-case accuracy of trained models against spurious correlations and group shifts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro