Pruning neural networks: is it time to nip it in the bud?

10/10/2018
by   Elliot J. Crowley, et al.
6

Pruning is a popular technique for compressing a neural network: a large pre-trained network is fine-tuned while connections are successively removed. However, the value of pruning has largely evaded scrutiny. In this extended abstract, we examine residual networks obtained through Fisher-pruning and make two interesting observations. First, when time-constrained, it is better to train a simple, smaller network from scratch than prune a large network. Second, it is the architectures obtained through the pruning process --- not the learnt weights ---that prove valuable. Such architectures are powerful when trained from scratch. Furthermore, these architectures are easy to approximate without any further pruning: we can prune once and obtain a family of new, scalable network architectures for different memory requirements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro