Pure-Circuit: Strong Inapproximability for PPAD

09/30/2022
by   Argyrios Deligkas, et al.
0

The current state-of-the-art methods for showing inapproximability in PPAD arise from the ε-Generalized-Circuit (ε-GCircuit) problem. Rubinstein (2018) showed that there exists a small unknown constant ε for which ε-GCircuit is PPAD-hard, and subsequent work has shown hardness results for other problems in PPAD by using ε-GCircuit as an intermediate problem. We introduce Pure-Circuit, a new intermediate problem for PPAD, which can be thought of as ε-GCircuit pushed to the limit as ε→ 1, and we show that the problem is PPAD-complete. We then prove that ε-GCircuit is PPAD-hard for all ε < 0.1 by a reduction from Pure-Circuit, and thus strengthen all prior work that has used GCircuit as an intermediate problem from the existential-constant regime to the large-constant regime. We show that stronger inapproximability results can be derived by reducing directly from Pure-Circuit. In particular, we prove tight inapproximability results for computing ε-well-supported Nash equilibria in two-action polymatrix games, as well as for finding approximate equilibria in threshold games.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro