QAOA-based Fair Sampling on NISQ Devices
We study the status of fair sampling on Noisy Intermediate Scale Quantum (NISQ) devices, in particular the IBM Q family of backends. Using the recently introduced Grover Mixer-QAOA algorithm for discrete optimization, we generate fair sampling circuits to solve six problems of varying difficulty, each with several optimal solutions, which we then run on ten different backends available on the IBM Q system. For a given circuit evaluated on a specific set of qubits, we evaluate: how frequently the qubits return an optimal solution to the problem, the fairness with which the qubits sample from all optimal solutions, and the reported hardware error rate of the qubits. To quantify fairness, we define a novel metric based on Pearson's χ^2 test. We find that fairness is relatively high for circuits with small and large error rates, but drops for circuits with medium error rates. This indicates that structured errors dominate in this regime, while unstructured errors, which are random and thus inherently fair, dominate in noisier qubits and longer circuits. Our results provide a simple, intuitive means of quantifying fairness in quantum circuits, and show that reducing structured errors is necessary to improve fair sampling on NISQ hardware.
READ FULL TEXT