QF-Geo: Capacity Aware Geographic Routing using Bounded Regions of Wireless Meshes
Routing in wireless meshes must detour around holes. Extant routing protocols often underperform in minimally connected networks where holes are larger and more frequent. Minimal density networks are common in practice due to deployment cost constraints, mobility dynamics, and/or adversarial jamming. Protocols that use global search to determine optimal paths incur search overhead that limits scaling. Conversely, protocols that use local search tend to find approximately optimal paths at higher densities due to the existence of geometrically direct routes but underperform as the connectivity lowers and regional (or global) information is required to address holes. Designing a routing protocol to achieve high throughput-latency performance across network densities, mobility, and interference dynamics remains challenging. This paper shows that, in a probabilistic setting, bounded exploration can be leveraged to mitigate this challenge. We show, first, that the length of shortest paths in networks with uniform random node distribution can, with high probability (whp), be bounded. Thus, whp a shortest path may be found by limiting exploration to an elliptic region whose size is a function of the network density and the Euclidean distance between the two endpoints. Second, we propose a geographic routing protocol that achieves high reliability and throughput-latency performance by forwarding packets within an ellipse whose size is bounded similarly and by an estimate of the available capacity. Our protocol, QF-Geo, selects forwarding relays within the elliptic region, prioritizing those with sufficient capacity to avoid bottlenecks. Our simulation results show that QF-Geo achieves high goodput efficiency and reliability in both static and mobile networks across both low and high densities, at large scales, with a wide range of concurrent flows, and in the presence of adversarial jamming.
READ FULL TEXT