Qualitative MDPs and POMDPs: An Order-Of-Magnitude Approximation
We develop a qualitative theory of Markov Decision Processes (MDPs) and Partially Observable MDPs that can be used to model sequential decision making tasks when only qualitative information is available. Our approach is based upon an order-of-magnitude approximation of both probabilities and utilities, similar to epsilon-semantics. The result is a qualitative theory that has close ties with the standard maximum-expected-utility theory and is amenable to general planning techniques.
READ FULL TEXT