Quantized Frank-Wolfe: Communication-Efficient Distributed Optimization

02/17/2019
by   Mingrui Zhang, et al.
0

How can we efficiently mitigate the overhead of gradient communications in distributed optimization? This problem is at the heart of training scalable machine learning models and has been mainly studied in the unconstrained setting. In this paper, we propose Quantized Frank-Wolfe (QFW), the first projection-free and communication-efficient algorithm for solving constrained optimization problems at scale. We consider both convex and non-convex objective functions, expressed as a finite-sum or more generally a stochastic optimization problem, and provide strong theoretical guarantees on the convergence rate of QFW. This is done by proposing quantization schemes that efficiently compress gradients while controlling the variance introduced during this process. Finally, we empirically validate the efficiency of QFW in terms of communication and the quality of returned solution against natural baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset