Quantum algorithmic randomness

08/08/2020
by   Tejas Bhojraj, et al.
0

Quantum Martin-Löf randomness (q-MLR) for infinite qubit sequences was introduced by Nies and Scholz. We define a notion of quantum Solovay randomness which is equivalent to q-MLR. The proof of this goes through a purely linear algebraic result about approximating density matrices by subspaces. We then show that random states form a convex set. Martin-Löf absolute continuity is shown to be a special case of q-MLR. Quantum Schnorr randomness is introduced. Quantum analogues of the law of large numbers and the Shannon-McMillan-Breiman theorem are shown to hold for quantum Schnorr random states.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro