Query2Label: A Simple Transformer Way to Multi-Label Classification

07/22/2021
by   Shilong Liu, et al.
10

This paper presents a simple and effective approach to solving the multi-label classification problem. The proposed approach leverages Transformer decoders to query the existence of a class label. The use of Transformer is rooted in the need of extracting local discriminative features adaptively for different labels, which is a strongly desired property due to the existence of multiple objects in one image. The built-in cross-attention module in the Transformer decoder offers an effective way to use label embeddings as queries to probe and pool class-related features from a feature map computed by a vision backbone for subsequent binary classifications. Compared with prior works, the new framework is simple, using standard Transformers and vision backbones, and effective, consistently outperforming all previous works on five multi-label classification data sets, including MS-COCO, PASCAL VOC, NUS-WIDE, and Visual Genome. Particularly, we establish 91.3% mAP on MS-COCO. We hope its compact structure, simple implementation, and superior performance serve as a strong baseline for multi-label classification tasks and future studies. The code will be available soon at https://github.com/SlongLiu/query2labels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset