Question Answering by Reasoning Across Documents with Graph Convolutional Networks
Most research in reading comprehension has focused on answering questions based on individual documents or even single paragraphs. We introduce a method which integrates and reasons relying on information spread within documents and across multiple documents. We frame it as an inference problem on a graph. Mentions of entities are nodes of this graph where edges encode relations between different mentions (e.g., within- and cross-document co-references). Graph convolutional networks (GCNs) are applied to these graphs and trained to perform multi-step reasoning. Our Entity-GCN method is scalable and compact, and it achieves state-of-the-art results on the WikiHop dataset (Welbl et al. 2017).
READ FULL TEXT