Question Generation from SQL Queries Improves Neural Semantic Parsing

08/20/2018
by   Daya Guo, et al.
0

We study how to learn a semantic parser of state-of-the-art accuracy with less supervised training data. We conduct our study on WikiSQL, the largest hand-annotated semantic parsing dataset to date. First, we demonstrate that question generation is an effective method that empowers us to learn a state-of-the-art neural network based semantic parser with thirty percent of the supervised training data. Second, we show that applying question generation to the full supervised training data further improves the state-of-the-art model. In addition, we observe that there is a logarithmic relationship between the accuracy of a semantic parser and the amount of training data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset