Random Graphs by Product Random Measures

03/27/2022
by   Caleb Bastian, et al.
0

A natural representation of random graphs is the random measure. The collection of product random measures, their transformations, and non-negative test functions forms a general representation of the collection of non-negative weighted random graphs, directed or undirected, labeled or unlabeled, where (i) the composition of the test function and transformation is a non-negative edge weight function, (ii) the mean measures encode edge density/weight and vertex degree density/weight, and (iii) the mean edge weight, when square-integrable, encodes generalized spectral and Sobol representations. We develop a number of properties of these random graphs, and we give simple examples of some of their possible applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset