RanStop: A Hardware-assisted Runtime Crypto-Ransomware Detection Technique
Among many prevailing malware, crypto-ransomware poses a significant threat as it financially extorts affected users by creating denial of access via unauthorized encryption of their documents as well as holding their documents hostage and financially extorting them. This results in millions of dollars of annual losses worldwide. Multiple variants of ransomware are growing in number with capabilities of evasion from many anti-viruses and software-only malware detection schemes that rely on static execution signatures. In this paper, we propose a hardware-assisted scheme, called RanStop, for early detection of crypto-ransomware infection in commodity processors. RanStop leverages the information of hardware performance counters embedded in the performance monitoring unit in modern processors to observe micro-architectural event sets and detects known and unknown crypto-ransomware variants. In this paper, we train a recurrent neural network-based machine learning architecture using long short-term memory (LSTM) model for analyzing micro-architectural events in the hardware domain when executing multiple variants of ransomware as well as benign programs. We create timeseries to develop intrinsic statistical features using the information of related HPCs and improve the detection accuracy of RanStop and reduce noise by via LSTM and global average pooling. As an early detection scheme, RanStop can accurately and quickly identify ransomware within 2ms from the start of the program execution by analyzing HPC information collected for 20 timestamps each 100us apart. This detection time is too early for a ransomware to make any significant damage, if none. Moreover, validation against benign programs with behavioral (sub-routine-centric) similarity with that of a crypto-ransomware shows that RanStop can detect ransomware with an average of 97
READ FULL TEXT