Rapid Detection of Hot-spot by Tensor Decomposition with Application to Weekly Gonorrhea Data

01/31/2020
by   Yujie Zhao, et al.
0

In many bio-surveillance and healthcare applications, data sources are measured from many spatial locations repeatedly over time, say, daily/weekly/monthly. In these applications, we are typically interested in detecting hot-spots, which are defined as some structured outliers that are sparse over the spatial domain but persistent over time. In this paper, we propose a tensor decomposition method to detect when and where the hot-spots occur. Our proposed methods represent the observed raw data as a three-dimensional tensor including a circular time dimension for daily/weekly/monthly patterns, and then decompose the tensor into three components: smooth global trend, local hot-spots, and residuals. A combination of LASSO and fused LASSO is used to estimate the model parameters, and a CUSUM procedure is applied to detect when and where the hot-spots might occur. The usefulness of our proposed methodology is validated through numerical simulation and a real-world dataset in the weekly number of gonorrhea cases from 2006 to 2018 for 50 states in the United States.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset