Recent Advances of Local Mechanisms in Computer Vision: A Survey and Outlook of Recent Work
Inspired by the fact that human brains can emphasize discriminative parts of the input and suppress irrelevant ones, substantial local mechanisms have been designed to boost the development of computer vision. They can not only focus on target parts to learn discriminative local representations, but also process information selectively to improve the efficiency. In terms of application scenarios and paradigms, local mechanisms have different characteristics. In this survey, we provide a systematic review of local mechanisms for various computer vision tasks and approaches, including fine-grained visual recognition, person re-identification, few-/zero-shot learning, multi-modal learning, self-supervised learning, Vision Transformers, and so on. Categorization of local mechanisms in each field is summarized. Then, advantages and disadvantages for every category are analyzed deeply, leaving room for exploration. Finally, future research directions about local mechanisms have also been discussed that may benefit future works. To the best our knowledge, this is the first survey about local mechanisms on computer vision. We hope that this survey can shed light on future research in the computer vision field.
READ FULL TEXT