Reconfigurable Intelligent Surfaces Empowered Green Wireless Networks with User Admission Control

06/16/2022
by   Jinglian He, et al.
0

Reconfigurable intelligent surface (RIS) has emerged as a cost-effective and energy-efficient technique for 6G. By adjusting the phase shifts of passive reflecting elements, RIS is capable of suppressing the interference and combining the desired signals constructively at receivers, thereby significantly enhancing the performance of communication In this paper, we consider a green multi-user multi-antenna cellular network, where multiple RISs are deployed to provide energy-efficient communication service to end users. We jointly optimize the phase shifts of RISs, beamforming of the base stations, and the active RIS set with the aim of minimizing the power consumption of the base station (BS) and RISs subject to the quality of service (QoS) constraints of users and the transmit power constraint of the BS. However, the problem is mixed combinatorial and nonconvex, and there is a potential infeasibility issue when the QoS constraints cannot be guaranteed by all users. To deal with the infeasibility issue, we further investigate a user admission control problem to jointly optimize the transmit beamforming, RIS phase shifts, and the admitted user set. A unified alternating optimization (AO) framework is then proposed to solve both the power minimization and user admission control problems. Specifically, we first decompose the original nonconvex problem into several rank-one constrained optimization subproblems via matrix lifting. The proposed AO framework efficiently minimizes the power consumption of wireless networks as well as user admission control when the QoS constraints cannot be guaranteed by all users. Compared with the baseline algorithms, we illustrate that the proposed algorithm can achieve lower power consumption for given QoS constraints. Most importantly, the proposed algorithm successfully addresses the infeasibility issue with a QoS guarantee for active users.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset