Recurrent Image Captioner: Describing Images with Spatial-Invariant Transformation and Attention Filtering
Along with the prosperity of recurrent neural network in modelling sequential data and the power of attention mechanism in automatically identify salient information, image captioning, a.k.a., image description, has been remarkably advanced in recent years. Nonetheless, most existing paradigms may suffer from the deficiency of invariance to images with different scaling, rotation, etc.; and effective integration of standalone attention to form a holistic end-to-end system. In this paper, we propose a novel image captioning architecture, termed Recurrent Image Captioner (RIC), which allows visual encoder and language decoder to coherently cooperate in a recurrent manner. Specifically, we first equip CNN-based visual encoder with a differentiable layer to enable spatially invariant transformation of visual signals. Moreover, we deploy an attention filter module (differentiable) between encoder and decoder to dynamically determine salient visual parts. We also employ bidirectional LSTM to preprocess sentences for generating better textual representations. Besides, we propose to exploit variational inference to optimize the whole architecture. Extensive experimental results on three benchmark datasets (i.e., Flickr8k, Flickr30k and MS COCO) demonstrate the superiority of our proposed architecture as compared to most of the state-of-the-art methods.
READ FULL TEXT